
WaveTrak Handlers

WaveTrak Handlers

The commands or functions that WaveTrak executes when it
performs its tasks are written as a combination of HyperTalk
scripts and XCMDs/XFCNs; the latter are written in C and
assembly language for maximum speed. Handlers are chunks of
HyperTalk that intercept and handle messages, hence the name
handler. Any segment beginning with on ... and ending with
end... is a handler; the most common one is the mouseUp
handler present in most buttons. The advantage of writing in
HyperTalk is simplicity and the ability to easily modify the
instructions. The one disadvantage is execution speed. Some
functions such as real-time data acquisition and number-
crunching operations like the FFT must be written in C or
assembly because of either the time constraints or sheer
computational demands. The disadvantage, of course, is that
such code modules are more difficult to write and modify. We
tried to strike a balance between performance and flexibility by
combining the two programming approaches. This chapter
describes some of the more important HyperTalk handlers
available to you when you write your own functions. Some of
the handlers are used internally by WaveTrak and are not
documented; you will normally never need to modify these. The
next chapter describes in detail all of WaveTrak's XCMDs and
XFCNs found in the master, A/D Lib and DSP Lib stacks.

1

WaveTrak Handlers

Stack Script

1. openStack
The openStack handler executes whenever you open the WaveTrak master
stack, either when you first launch HyperCard, or when you come back to the
master stack from another, like the WaveTrak summary stack. This handler
performs a number of important initializations, such as declaring system-wide
globals, checking the hardware, setting up custom WaveTrak menus and so
on. The entire WaveTrak environment depends on these initializations, so you
should not delete any lines from the openStack handler. However, you can
certainly add additional instructions of your own to further customize your
stack. For example, you can add more menus to the menu bar, or more menu
items under the existing menus as your requirements

2

WaveTrak Handlers

evolve. The comments in the handler clearly identify where menus are set up;
consult your HyperCard manuals for details on how to create new menus,
assign messages and write handlers to execute the appropriate instructions
when the menu item is selected.
Some initializations should only be performed once when the stack is first
opened. The openedOnce global senses whether the stack had been
previously opened.

2. closeStack
This handler resets the menu bar to the standard HyperCard menus when you
leave WaveTrak. Add any other commands you need here.

3. UpdateSysParams
This handler copies default values from various fields (such as in the System
Parameters card) into global variables. If you add your own default fields on
existing or additional cards, place instructions to copy these fields into your
own globals in this handler to ensure that values will be available throughout
your stack.

4. ErrNum
ErrNum displays a dialog with a brief message describing the most recent
error, if any, generated by one of the WaveTrak XCMDs or XFCNs. All
XCMD errors are returned in the global XCMDErr. If XCMDErr = 0 then
no error occurred and ErrNum does nothing. The error messages are stored
in the ErrorList card along with an error number. When you call ErrNum,
you pass the error number as the only parameter, and ErrNum looks up the
appropriate message from the list in the ErrorList card. You can look up an
error by its number in the chapter on WaveTrak errors for more information.
It's a good idea to call ErrNum after every XCMD to make sure that it
completed successfully. Otherwise you will only hear a beep and not know
what caused it.

3

WaveTrak Handlers

Example 1:

Here's how to report errors generated by XCMDs (AcqWave as an example).

global XCMDErr, theWave
. . .
AcqWave sampleInterval, npoints, startMUX,

endMUX,"theWave"
ErrNum XCMDErr -- pass the error number to ErrNum

If something went wrong during AcqWave, calling ErrNum immediately
afterwards will display an error dialog with a message. Otherwise, AcqWave sets
XCMDErr to zero and calling ErrNum does nothing. Examine the buttons in the
button bank for more examples of how to handle WaveTrak errors.

If you want to display a certain error dialog then look up its number in the
chapter on WaveTrak errors and call ErrNum directly with that number:

Example 2:

Here's how to report a specific error, for example, informing the user that a certain
function is not implemented.

 -- 1 is the error code for 'Function not implemented
error'
 ErrNum 1

5. doMenu
Some menu selections have to be handled differently depending on the
context. For example 'Delete Card' must update different index fields
depending on whether you choose this item from a trace or root card. The
doMenu handler intercepts menu selections and re-directs those that need
special attention.

6. newRoot
This handler creates a new root card, ensuring that it is linked to the rest of the

4

WaveTrak Handlers

stack in the appropriate order, that the date stamp is entered, and that default
fields are initialized.

5

WaveTrak Handlers

7. PlotData
PlotData is a general purpose handler that plots a table of X,Y data on the
current card. The parameters are as follows, in order:
• theData: comma-delimited X,Y data pairs.
• Xmin, Xmax: the minimum and maximum X values in theData.
• Ymin, Ymax: the minimum and maximum Y values in theData.
• gridDots: TRUE for dots to be plotted in a grid over the data.

The 'Plot Abs Areas' analysis button in the root cards uses this handler to
display its results. Press this button for an example.

6. translateToReal

This is a function (i.e. it returns a result) which converts a binary integer into a
real value in the context of a pre-defined full scale range and data type (see
the scripting chapter for details on WaveTrak data types) used to encode the
wave. You will use this and the related function translateToBinary
extensively to convert data from the A/D converter into real values.
The parameters are as follows, in order:
• i: the binary integer.
• minFS, maxFS: the minimum and maximum real full-scale values.
• waveType: the binary encoding scheme (e.g. -12, +16, etc.).

6

WaveTrak Handlers

Example:

You have just read a single integer value (i) from the A/D converter (for example
+456) and want to know the real voltage that this value represents. You look up
the full-scale range for the A/D channel just sampled from the External A/D gain
table in the System Parameters card (or from the FSTable global) and find that it's
-10000 to +10000 mV. You also know (from the ADCbits global) that your
converter is configured for 12 bits, signed two's complement encoding, so the data
type is -12:

put translateToReal (456,-10000,10000,-12) && "mV"

will write '2229.54823 mV' in the message box, which means that a converter code
of +456 represents a real voltage value of about 2229 mV.

put translateToReal (456,-10,10,-12) && "V"

would be just as correct, except the result would be reported in volts rather than
mV.

See the 'Show Single Mean' button in the Button Bank for another example.

7. translateToBinary

This function does the opposite of translateToReal; it converts a real
value into a binary integer in the context of a pre-defined full scale range and
data type. If the binary value would have been beyond the range allowed by
the waveType parameter, translateToBinary returns 100000 to signal
the error condition (100000 was chosen because it exceeds the largest 16 bit
integer).
The parameters are as follows, in order:
• r: the real value
• minFS, maxFS: the minimum and maximum real full-scale values
• waveType: the binary encoding scheme (e.g. -12, +16, etc.)

7

WaveTrak Handlers

Example 1:

You want to acquire a wave when it crosses a threshold of -0.789 V, using the
AcqWaveThresh XCMD (see the following chapter for details). This XCMD
requires a binary value as the trigger (threshold) level. You look up the full-scale
range for the required A/D channel from the External A/D gain table in the System
Parameters card (or from the FSTable global) and find that it's -1000 to +1000 mV.
You also know (from the ADCbits global) that your converter is configured for 12
bits, signed two's complement coding, so the data type is -12:

put translateToBinary(-0.789,-1,1,-12) into thresh
AcqWaveThresh sInt,npoints,sMUX,endMUX,¬
thresh,slope,timeout,"theWave"

Note that you must be consistent in passing volts or mV, but not a combination.
thresh will get the value -1616, and AcqWaveThresh will correctly trigger at
-0.789 V.

Example 2:

You now want to repeat the acquisition, but with a threshold of 1.23 V:

put translateToBinary(1.23,-1,1,-12) into thresh
AcqWaveThresh sInt,npoints,sMUX,endMUX,thresh,slope,¬
timeout,"theWave"

This time, AcqWaveThresh reports a 'Threshold out of range error'. 1.23 volts
was beyond the ± 1 V full-scale so translateToBinary purposely returned a
large integer (100000) to signal this error. We neglected to check if
translateToBinary returned a valid binary number.

See the 'Single Thresh' button in the Button Bank for another example.

8. getWaveType
This function returns the data type of the wave passed as the first (and only)
parameter. Note that unlike XCMDs, the wave is passed by value so its name
must not be enclosed in quotes. See the scripting chapter for details on
standard WaveTrak data types.
8

WaveTrak Handlers

9

WaveTrak Handlers

Example:

global theWave
...
AcqWave sampleInterval, npoints, startMUX,

endMUX,"theWave"
put getWaveType (theWave)

Assuming that your converter is configured for 12-bit signed two's complement
coding, the last line will write '-12' in the message window. Note that theWave is
passed by reference (i.e. its name is passed, in double quotes) to AcqWave, but is
passed by value (no quotes) to getWaveType. As a result, waves passed to
getWaveType need not be stored in global variables.

9. ReplotWave
This handler will redraw (using the DrawWaveCoords XCMD) in the
display window, any wave(s) whose global names are stored as a comma-
delimited list in the gList global. ReplotWave will only redraw the waves
in a trace card or the Scope card. Therefore, you can call ReplotWave any
time (after dismissing a dialog box for example) from any card without fear of
having waves drawn in wrong card. You have to set up the following globals
for ReplotWave to work correctly: gList, dispRect, leftX, rightX, topY,
bottomY, baseline, Xunit, Yunit. The chapter on scripting explains what
these globals mean and how to correctly initialize them.

Root Background Script

1. openBackground, closeBackground
These two handlers update menus whenever you jump into and out of the root
background. You can add your own menu operations here as well.

2. Single
Most of the trace acquisition commands are initiated using buttons in the trace
cards. However, there must be a way to create the first trace card under a new

10

WaveTrak Handlers

root. This handler responds to the 'Single A/D' menu item under the 'Acq'
menu by sending a mouseUp message to the 'Single A/D' button in the trace
card.

3. deleteRoot
This handler deletes the current root card as well as all traces belonging to it.
It also ensures that the remaining roots are re-linked and re-numbered
correctly, and that the Root Titles field in the Home Card is updated.
RenumberRoots and UpdateTitlesField handlers help in this task.

Trace Background Script

1. openBackground, closeBackground
These two handlers update menus whenever you jump into and out of the
trace background. You can add your own menu operations here as well.

2. openCard
This important handler copies vital information into a series of globals
whenever you go to a new trace card, then draws the previously saved wave
on the screen. To avoid duplicating information and increasing the size of the
stack, digitized data are stored in compressed format in a hidden field named
'data', and not as a graphic on the trace card. Thanks to several highly
optimized XCMDs, WaveTrak is able to decompress the data from the field
and draw the wave almost instantly each time you open a new trace card.
Let's go over in detail some of the more important instructions in the
openCard handler. Below is a listing of the handler, with line

11

WaveTrak Handlers

numbers added so the following discussion can clearly refer to specific parts
of the code:

1 on openCard
2 global rootId,XCMDErr,theWave,HParams,Readings
3 global
gList,leftX,rightX,topY,bottomY,baseline,Xunit,Yunit

 -- copy wave & info into globals for other handlers
4 put bg fld "data" into theWave
5 put "theWave" into gList -- name of wave(s) to draw
6 put bg fld "HParams" into HParams
7 put bg fld "Readings" into Readings

 -- if it's a wave, draw it
8 if line 1 in HParams = 1 then -- is it a wave?
9 put 0 into leftX
10 get line 2 in HParams
11 put (it-1) * (line 3 in HParams) into rightX
12 put "µs" into Xunit

13 get line 4 in HParams -- full scale and units
14 put item 1 in it into bottomY
15 put item 2 in it into topY
16 put item 3 in it into Yunit
17 put line 2 in Readings into baseline

18 ReplotWave
19 end if

...

end openCard

Line 1 introduces the openCard handler, and lines 2 and 3 declare globals
that will be initialized and made available to other handlers while you are at
this trace card. Several of these globals provide a complete description of the
wave so other handlers can draw it, analyze it or export it. See the section on
12

WaveTrak Handlers

wave descriptors in the scripting chapter for more details. The actual
compressed wave is copied into the global theWave in line 4 and the name of
this global is put into gList. You will recall that WaveTrak XCMDs that
operate on one or more waves expect the name(s)

13

WaveTrak Handlers

of the global variables containing these waves to be passed in the global gList.
Since we have a single wave per trace, only a single name is copied into
gList. Data in background fields 'HParams' and 'Readings' are copied into
variables for quicker access in lines 6 and 7.

Although the current version of WaveTrak holds only waves in the 'data'
fields, this may change. The data identifier is always stored in line 1 of the
HParams pop-up field and is set to 1 for a wave. Line 8 checks if the trace
really contains a wave before proceeding to draw it. The previous chapter
explained the eight wave descriptors that must be initialized for any wave to
be processed correctly by WaveTrak. They are as follows:

leftX: the time of the first point in a wave, defined as zero (line 9).

rightX: the time of the last point in a wave, computed as the number of points
in the wave (line 10) minus 1 (see Fig. 9-1) multiplied by the sampling
interval (line 11). The sampling interval is stored in line 3 in the HParams
field.

Xunit: unit of measure for the X-axis, defaults to 'µs' for waves digitized in
the time domain (line 12).

bottomY, topY, Yunit: the minimum and maximum full-scale values at the
time of the acquisition as well as the unit of measure for the Y-axis are stored
as three items in line 4 in the HParams field. Lines 13 to 16 in the script copy
this information to their respective globals.

baseline: the DC level of the signal may have been stored in line 2 of the
Readings field (otherwise it defaults to zero); line 17 copies this value to the
corresponding global.

Along with gList, these globals provide a complete description of our wave.
Line 18 can then call the standard ReplotWave handler which will know
exactly how to draw the wave, zoom it, and display the correct cursor readout
and units, using the above globals. You can see how straightforward it would
be to modify this script to handle any other data. For instance, if you wanted
to store only frequency spectra on the trace cards, you would put "Hz" into
Xunit and "dB" into Yunit.

14

WaveTrak Handlers

The remainder of the openStack handler does some routine housekeeping.

15

WaveTrak Handlers

3. SaveIgorTEXT
Although this handler simply responds to the 'Save as Igor Text' menu
selection, it deserves brief mention because of the potential it offers for
creating automated Igor macros. The designers of Igor endowed their
application with the capability of not only importing data from a disk file, but
also executing any number of standard Igor commands that may be appended
to the end of the data. You will need to refer to the Igor manual to learn how
to do this. There is a comment line in the SaveIgorText handler that tells
you where to add your own Igor commands to the footer that is written after
the data. Compose any valid Igor command line and add this text as follows:

put "any valid Igor command line" & return after
footer

You can string together as many commands as you wish. When you read this
file into Igor, the data will be imported and any valid commands will be
executed. In this way, you can instruct Igor to perform repetitive tasks. If you
need Igor to do many different functions, or the macro you need is long, you
could create a new card with several fields, each containing a collection of
Igor commands. You can select the appropriate field and append its contents
to the footer depending on what you need to accomplish. Most wave
processing and analysis can be more easily done using WaveTrak's powerful
XCMDs. For page layout and graphing, however, Igor is an excellent choice.

4. newTrace
The newTrace handler is analogous to the newRoot handler in the root
background. It is used to create and link new trace cards to the end of the
series of traces under the current root. Default HParams and Readings fields
are filled in, as well as the time stamp, marks, and so on. You can add your
own functions here as well.

5. deleteTrace, RenumberTraces
These two handlers ensure that any remaining traces will be correctly linked
and numbered when you delete a trace card.

16

WaveTrak Handlers

There are many more scripts in fields, buttons and card scattered throughout
the WaveTrak stack. The remaining handlers are used internally and you
normally will never need to worry about them. However, we encourage the
more adventurous users to explore these scripts to learn how WaveTrak works.
You should modify any undocumented handlers with caution as this may
interfere with WaveTrak's normal operation. It's always a good idea to keep a
backup copy of the original WaveTrak disk close by, and more importantly, of
your most recent working modification as well.

Tip:

The HyperCard environment is very forgiving, and you will usually end up
with an error message (from HyperCard or WaveTrak) if something goes
wrong. However, if a script is interrupted by an error, the stack might be left
in an inconsistent state, and you may find yourself unable to navigate. The
Home Card was designed to 're-orient' all the directions and menus, so jump
to the Home Card when you run into trouble, by selecting 'Home Card' from
the Go menu, or typing command-1 (remember to fix the problem script
though!).

In Summary

• WaveTrak commands and functions consist of a combination of HyperTalk
scripts for maximum flexibility, and XCMDs/XFCNs for maximum speed.

• Commands implemented as HyperTalk scripts are called handlers and respond to
messages sent by events (such as mouse clicks) or by other handlers.

• Most of WaveTrak's housekeeping functions are written in HyperTalk and are
customizable by the user.

17

